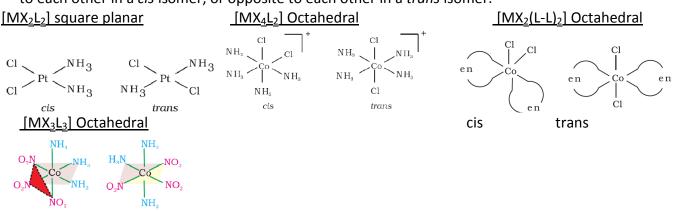
Atomic Energy Central School, Indore


Class XII Chemistry CO-ORDINATION COMPOUNDS Handout 3/6

Isomerism in Coordination Compounds

Two principal types of isomerism are known among coordination compounds. Each of which can be further subdivided.

(a) Stereoisomerism

(i) **Geometrical isomerism:** This type of isomerism arises in heteroleptic complexes due to different possible geometric arrangements of the ligands. The two similar ligands may be arranged adjacent to each other in a *cis* isomer, or opposite to each other in a *trans* isomer.

(ii) **Optical isomerism:** Optical isomers are mirror images that cannot be superimposed on one another. These are called as *enantiomers*.

(b) Structural isomerism

- (i) **Linkage isomerism:** Linkage isomerism arises in a coordination compound containing ambidentate ligand. They differ in the types of donor atoms. Ex [Co(NH₃)₅(NO₂)]Cl₂ & [Co(NH₃)₅(ONO)]Cl₂
- (ii) **Coordination isomerism:** This type of isomerism arises from the interchange of ligands between cationic and anionic entities of different metal ions present in a complex. Ex. [Cr(NH₃)₆][Co(CN)₆] & [Co(NH₃)₆][Cr(CN)₆]
- (iii) **Ionisation isomerism:** This form of isomerism arises when the counter ion in a complex salt is itself a potential ligand and can displace a ligand which can then become the counter ion. Ex. $[Co(NH_3)_5SO_4]$ Br and $[Co(NH_3)_5SO_4]$.
- (iv) **Solvate isomerism:** Solvate isomers differ by whether or not a solvent molecule is directly bonded to the metal ion or merely present as free solvent molecules in the crystal lattice. An example is provided by the aqua complex $[Cr(H_2O)_6]Cl_3$ (violet) and $[Cr(H_2O)_5Cl]Cl_2.H_2O$ (grey-green).